next up previous contents
Next: Polarization Synthesis Up: Polarimetric Description of Scatterers Previous: The Jones Matrix   Contents

The Stokes Matrix

Another way to describe a scatterer, which is widely used in optics is the Stokes matrix. The Stokes vector from (2.39) may be also written as [Ulaby90]
$\displaystyle \vec{g} = \left[ \cal R \right] \vec{G} =
\left[ \begin{array}{cc...
...ert E_v\vert^2  Vert E_h\vert^2  E_h E_v^*  E_v E_h^*
\end{array} \right]$     (3.4)

Furthermore, between the scattered vectors $ \vec{G}^{s}$ and the transmitted vector $ \vec{G}^{t}$ exists the following relation [Ulaby92]
$\displaystyle \vec{G}^{s}$ $\displaystyle =$ $\displaystyle \frac{1}{r^2} \left[ \cal W \right] \vec{G}^{t}$ (3.5)
$\displaystyle \left[ \begin{array}{c}
{\vert E^{s}_{v}\vert}^{2}  {\vert E^{s...
...}^{2}  E^{s}_{h} {E^{s}_{v}}^*  E^{s}_{v} {E^{s}_{h}}^*
\end{array} \right]$ $\displaystyle =$ $\displaystyle \frac{1}{r^2}
\left[ \begin{array}{cccc}
S^*_{vv}S_{vv} & S^*_{vh...
...}^{2}  E^{t}_{h} {E^{t}_{v}}^*  E^{t}_{v} {E^{t}_{h}}^*
\end{array} \right]$  

Using (2.40) and (2.41) we can now write the Stokes vector of the scattered wave $ \vec{g}^{s}$ as

$\displaystyle \vec{g}^{s} = \left[ \cal R \right] \vec{G}^s = \frac{1}{r^2} \le...
...\cal R \right]^{-1}\vec{g}^{t} = \frac{1}{r^2} \left[ \cal L \right]\vec{g}^{t}$ (3.6)

where $ \left[ \cal R \right]^{-1}$ is the inverse matrix of $ \left[ \cal R \right]$


$\displaystyle \left[ \cal R \right]^{-1} =
\left[ \begin{array}{cccc}
1 & 1 & 0 & 0\\
1 & -1 & 0 & 0\\
0 & 0 & 1 & i\\
0 & 0 & 1 & -i
\end{array} \right]$     (3.7)

$ \left[ \cal L \right]$ is a $ 4 \times 4$ real matrix, describing the relation between the Stokes vector of the scattered wave and the Stokes vector of the transmitted wave. This $ \left[ \cal L \right]$ matrix is called Stokes-matrix [Tsang95] or Müller-matrix [Jones89], [Schurcliff62]. It can be seen from the definition of the elements of $ \left[ \cal W \right]$ in (3.5), that under the multiplication $ S^*_{xy}S_{xy}$ with $ x,y = h$ or v, the information about the absolute phase is lost.

The Stokes-matrix is often used in literature [Pottier92a], [Pottier92b], [Krogager93], and mentioned here for the sake of completeness, but will not be used further in this treatment.


next up previous contents
Next: Polarization Synthesis Up: Polarimetric Description of Scatterers Previous: The Jones Matrix   Contents